您当前位置:资讯百科知识技术文库基于DSP CPLD信号采集系统通讯接口设计

基于DSP CPLD信号采集系统通讯接口设计

  来源:互联网  发布时间:11-16

浏览量:    

核心提示:  0.引言  随着数字信号处理技术理论的不断发展,数字信号处理器的发展也是日新月异。不仅执行指令速度越来越快,而且其功耗

  0.引言

  随着数字信号处理技术理论的不断发展,数字信号处理器的发展也是日新月异。不仅执行指令速度越来越快,而且其功耗也越来越低。许多仪器或检测设备都不约而同地将DSP应用到那些数据量庞大而且需实时传送数据的系统中。核信号数据采集系统也不例外,利用DSP可以实时有效地处理采集的信号,并将处理数据发送至上位机进行进一步处理。通常数据采集系统下位机与上位机的通讯采用串口方式,这种方式不仅协议简单,而且连接方便。

  但是这种方式的数据传送速率不高,而USB总线接口具有方便快捷、支持即插即用、可实现高速数据通讯等优点,在很多领域得到广泛应用。USB总线接口在USB1.1协议下传输速率可达12Mbps,USB2.0协议下可达480Mbps,完全可以满足目前的数据采集控制系统对于数据实时传输速率越来越高的要求。因此在本系统设计中其通讯方式采用USB(UNIversalSerialBus)总线接口方式。USB控制芯片采用Cypress公司EZ-USBSX2系列的CY7C68001控制芯片,DSP选用TI公司的定点DSP芯片TMS320VC5502。

  1.CY7C68001USB控制芯片介绍

  CY7C68001是由美国Cypress公司开发的高速USB芯片,支持USB2.0协议。其内部集成有USB收发器(物理层)、USB串行接口引擎SIE(链路层,实现底层通信协议)、4KB的FIFO以及电压调节器、锁相环;可工作于全速(12Mb/s)和高速(480Mb/s)两种传输模式,支持8位和16位数据总线方式,具有同步和异步的FIFO接口。CY7C68001被用来与DSP、ASIC、FPGA等控制器连接实现USB的功能,其内部不含微控制器。同时CY7C68001提供4种传输方式(控制传输、中断传输、批量传输和同步传输),可满足用户对各种传输方式的要求。由于该控制芯片内不含微控制器,USB的应用层协议应该由DSP编程实现,USB固件的加载必须靠DSP控制CY7C68001完成。

  2.通讯接口系统硬件设计

  整个采集系统包括的部分有传感器信号调理电路、A/D转换电路、FIFO数据缓冲单元、DSP控制器、FLASH程序存储单元、CPLD逻辑控制单元、与上位机连接的USB通讯单元。其中与PC机通讯的USB单元硬件接口框图如下图所示。

  
图1 数据采集系统与PC机通讯的硬件接口框图

  由图1可以看出,通讯部分主要由CY7C68001USB控制器、CPLD逻辑单元、E2PROM、TMS320VC5502组成。由于整个系统所需的器件数目较多,由此带来的逻辑控制较为复杂,而DSP的I/O接口有限,故在系统中加入了CPLD逻辑控制单元,用于产生电路中需要的逻辑状态。同时用CPLD中还实现了寄存器功能,这部分寄存器用于表征USB通讯时各种状态信息,便于DSP查询。

  CY7C68001USB控制器与TMS320VC5502采用EMIF连接方式,并将USB控制器中的存储器配置到CE1空间。同时采用异步读写方式完成TMS320VC5502与CY7C68001之间的数据和命令交换。系统中E2PROM的作用是完成USB控制器的描述表自举。CY7C68001控制器的自举方式有两种:EEPROM和微控制器,本系统采用EEPROM方式。

  3.通讯接口系统软件设计

  3.1 主机端软件设计

  主机端软件的功能主要是完成下位机上传数据的接收、显示、分析等。由于信号采集的数据量较大,所以在USB传输方式上采用批量传输方式。主机端软件的设计包含3个方面:

  (1)USB驱动程序设计

  USB驱动程序的功能主要是实现USB发现、配置、关闭以及数据的传送接口控制。USB设备驱动程序的设计是基于WDM(Windowsdrivermodel,驱动程序模型)的。WDM采用分层驱动程序模型,分为较高级的USB设备驱动程序和较低级的USB函数层。其中USB函数层由两部分组成:较高级的通用串行总线模块(US-BD)和较低级的主控制器驱动程序模块(HCD)。在上述USB分层模块中,USB函数层由操作系统提供,负责管理USB设备驱动程序和USB控制器之间的通信、加载及卸载USB驱动程序,与USB设备通用端点建立通信来执行设备配置、数据与USB协议框架和打包格式的双向转换任务。

  (2)安装USB的信息文件(.inf)

  这一步用于将驱动程序绑定到特定设备的VerdorID(VID)和ProductID(PID)。当USB设备插入计算机时,计算机检测到设备插入后自动发出查询请求;USB设备回应该请求,并送出设备的VID/PID。计算机根据这两个ID装载相应设备驱动程序,完成枚举。

  (3)用户应用程序

  用户应用程序是数据采集系统的核心,其主要功能为:开启或关闭USB设备、检测USB设备、设置USB数据传输管道、设置A/D状态和数据采集端口、实时从USB接口采集数据、显示并分析数据。整个应用程序采用MicrosoftVisualC++编写,通过对界面的控制实现A/D的采样以及数据的显示。

  下面列举一些与应用程序有关的函数:

  BOOLEAN OpenDriver ( ) ;

  BOOLEAN CloseDriver ( ) ;

  PVO ID Sx2GetDeviceDesc ( ) ;

  PVO ID Sx2GetStringDesc ( int stringIndex) ;

  PVO ID Sx2GetConfigDesc ( ) ;

  BOOLEAN Sx2GetPipe Info ( PVO ID p Interface) ;

  BOOLEAN Sx2SendVendorReq ( PVO ID myRequest, char * buffer, int bufferSize, int * recnBytes) ;

  BOOLEAN Sx2GetPipe Info ( PVO ID p Interface) ;

  3.2 DSP软件程序设计

  USB主机与设备间的数据传输是通过设备中的端点(Endpoint)进行的。这些端点通过端点号和输入输出方向来进行标识,并为数据传输分配固定的FIFO存储区。本系统在初始化时将CY7C68001的4个端点配置为批量传输类型。其中,FIFO2、FIFO4为输出端点,用于接收上位机传来的数据;FIFO6、FIFO8为输入端点,用于存放待发送的数据。各个FIFO设置为异步工作模式。DSP经初始化后打开USB外部中断,向CY7C68001写入描述符表,等待其枚举中断。枚举成功后,DSP对CY7C68001进行其他配置并清空FIFO,然后等待主机发送用户请求并进行相应处理。软件程序流程图如图2所示。

  DSP软件程序设计主要包括DSP的初始化、USB描述符表的写入和其他命令寄存器的配置以及用户请求的相应处理。DSP的初始化主要是初始化时钟速率、配置EMIF口、配置McBSP口等。USB描述符表主要是完成USB芯片内部的初始配置,命令寄存器的配置是完成USB中断的开启、端点数据传输容量以及方向的配置等。用户请求是用户应用程序,根据用户发送的请求完成相应的数据传输。

  
图2 DSP软件程序设计流程图

  4. 结论

  本系统采用USB接口完成了核信号采集系统与上位机间的数据传输,上位机的用户程序显示所传数据以及波形图。经验证表明该方法连接简单,传输可靠。与普通串口相比,其速度也得到了提升。

  本文创新点:将传统的DSP信号采集系统用于核信号的采集上,并且将与上位机进行通讯的串行口方式改进为USB方式,采用这种即插即用的接口不仅方便了与上位机的连接而且提高了传输的速率。


上一篇 : 暂无             下一篇 : 烤地瓜机 烤地瓜机烤地瓜的原理

版权声明:

  1.华商贸易网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。

  2.如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系邮箱:me@lm263.com

 

 

网站首页 | 行业资讯 | 投资理财 | 企业管理 | 成功励志 | 市场营销 | 范文大全 | 智慧人生 | 创业指南 | 贸易宝典 | 百科知识