来源:互联网 发布时间:11-15
浏览量:
摘 要:阻尼最小二乘法在主动光学研究中有重要的作用。针对主动光学的需要,就阻尼最小二乘法求解过程中参数进行精度估计,对待求量进行精度估计,以及将待求量代入原方程后的所得进行精度估计,对它们的方差进行了推导。
1 引 言
阻尼最小二乘法是Kenneth Levengerg在1943年旨在解决最小二乘法中非线性问题[1]而提出的,现已成为条件约束下优化的重要算法。
在天文仪器领域,随着望远镜口径的增大,要使望远镜镜面保持良好面形,根据实测镜面面形修正镜子支撑力或位移从而保证良好镜面面形的主动光学技术成为新建大望远镜的必备技术。其中,阻尼最小二乘法在主动光学研究中起了重要作用[2]。
文章针对主动光学需要,对阻尼最小二乘法进行精度估计。对求解过程中的参数进行精度估计,对待求量进行精度估计,以及将待求量代入原方程后所得结果进行精度估计,对它们的方差进行了推导。
2 算 法
镜面面形w,镜子柔度矩阵C与支撑力f三者间若存在关系
式中,m是镜面采样点个数,n是支撑力个数,则可根据面形w计算出支撑力f,使得镜子保持预期的面形w。但由于误差关系,若用最小二乘法进行计算时,由于误差而产生的支撑力f的误差很大,可能造成镜子的损坏。因此,苏定强在参考文献[2]中提出用阻尼最小二乘法解决这个问题,并用公式
进行计算。其中,p是阻尼系数, I为单位矩阵。根据实验确定阻尼系数,当阻尼系数为0时,阻尼最小二乘法退化为最小二乘法。
面形w为直接测量值,现常采用Hartmann方法测量,将镜子分成若干区域,同时进行测量。这里,将每个区域间测量视为互相独立,等精度。
柔度矩阵C为间接测量值,C的测量采用单位支撑力变化的面形差来计算。对于C矩阵的第i列,其计算公式为
3 精度估计
3.1 参数w的精度估计
对于镜面面形某个区域wi的直接测量结果,其精度估计用均方差
表示,其中m为测量次数。面形测量的精度由测量仪器与测量环境确定。
由于视wi为等精度测量,因此
3.2 参数C的精度估计
柔度矩阵C的第i列的方差为
若测量柔度阵C所采用的两支撑力差值相等均为Δf,则矩阵C任意项Cij的方差为
3.3 待求量f的精度估计
待求量支撑力f的方差
3.4 阻尼最小二乘法解得的结果代入原方程组所得镜面面形w的精度估计
将计算结果代入柔度方程组(1),不考虑柔度阵误差,意味着所计算结果施加在实际系统的误差关系,也就是对即将出现的镜面面形w进行精度分析。
即将出现的镜面面形w的方差为
4 结 论
文章针对主动光学的需要,对阻尼最小二乘法进行精度估计,推导了求解过程中参数、待求量、以及将待求量代入原方程后的所得结果的方差。
参考文献:
[1] Kenneth Levenberg. A method for the solution of certain non-linearproblemsin least squares[J]. Quart Appl Math, 1944,2:164—168.
[2] Su Ding-qiang, Jiang Sheng-tao, Zou Wei-yao, et al. Experimentsystem of thin-mirror active optics[J]. Proc SPIE, 1994,2199:609—621.
[3]梁晋文,陈林才,何贡.误差理论与数据处理[M].北京:中国计量出版社, 1989.
[4]沙定国.实用误差理论与数据处理[M].北京:北京理工大学出版社, 1993.
[5]肖明耀.误差理论与应用[M].北京:计量出版社, 1985.
[6]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社, 1989.
作者简介:郭永卫(1971-),男,河北省人,中国科学院国家天文台工程师,博士研究生,主要从事天文仪器方面的研究。
上一篇 : 暂无 下一篇 : 烤地瓜机 烤地瓜机烤地瓜的原理
版权声明:
1.华商贸易网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。
2.如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系邮箱:me@lm263.com