②客户分类(segmentation)
假设企业已经认识到客户的存在,但如何知道哪些客户对企业是盈利,哪些是不盈利的。仅依据对客户当前信息的分析,很难得出令人满意的答案。企业此时需要与客户有关的历史记录。针对不同的客户分类方式,有时采用分析技术可以实现,而当有时面对较深层次的分类任务时,就需要引入知识发现技术了。
一个好的数据仓库环境,可完全满足客户分类对数据的多重需求。数据仓库环境集成了与客户有关的当前和历史的数据,并在此基础上建立起面向不同分析任务的应用(数据集市)。比如,客户利润率分析,销售渠道分析,商业活动分析等。这些分析算法必须与企业的商业模式相一致。
③客户满意
企业是否能够测量客户满意度?在你的企业中,客户满意分别与企业员工的积极性和企业实施的优惠政策是否有关系?如果你的答案是否定的,那么可以认识你的企业还没有建立以客户为中心的正确的环境。
这种正确的环境绝非是仅建设先进的CallCenter等手段所能实现的,它需要一个企业的企业文化、组织结构、管理模式等整体环境的大调整,以适应从以产品为中心到以客户为中心的转变;另一方面,还包括使用知识发现技术对客户知识的正确的发现和使用,了解客户满意需要的是什么,如何改进产品使客户做到更满意。
④客户差异(differentiation)
客户差异是指企业根据不同客户对企业的贡献的大小,实施在客户上的不同的价值回报。分析的对象包括客户生命周期价值、消费行为、VIP特征等。企业需要建立相应的知识发现模型。此外,企业必须具有对知识发现结果-客户知识的快速反应的能力,企业各部门能够做到基于客户知识的互动。
⑤客户忠诚
客户忠诚直接的表现是客户的持续购买,它反应了企业对客户不断更新的需求的有效把握。客户忠诚是对客户知识的反复有效利用的结果。客户忠诚的获得是企业在客户关系上最难达到的境界,但却是最佳的。通过持续的接触,忠诚客户数据的收集和集成成为最容易和是最有效的事情,但忠诚客户的保留问题仍离不开知识发现技术的支持。随着人们越来越深刻地认识到客户忠诚的重要性,知识发现技术在客户保留中的作用也会逐渐显现出来。
上一篇 : 独立电商或将是电子商务的新未来
下一篇 : 板栗 “6个栗子等于1碗饭” 板栗吃多了易发